
Increase the number of workers by setting Max Number of Workers to your total CPU
count. This will allow CrossBox to utilize a multi-core processing. For example, if you
have a server with 8 CPUs, set this to 8.

Remember that each worker also allocates 70-100 MB of RAM. Multiply this by a
number of workers and you'll get the total amount of additional RAM which the change
of this setting will require.

For a high-performance system trying to serve thousands of concurrent network
clients, default Linux kernel parameters are often too low. Consider making following
changes

Increase max open files to 100,000 from the default (typically 1024). In Linux, every
open network socket requires a file descriptor. Increasing this limit will ensure that
lingering TIME_WAIT sockets and other consumers of file descriptors don’t impact our
ability to handle lots of concurrent requests.
Decrease the time that sockets stay in the TIME_WAIT state by
lowering tcp_fin_timeout from its default of 60 seconds to 10. You can lower this even
further, but too low, and you can run into socket close errors in networks with lots of
jitter. We will also set tcp_tw_reuse to tell the kernel it can reuse sockets in
the TIME_WAIT state.
Increase the port range for ephemeral (outgoing) ports, by lowering the minimum
port to 10000 (normally 32768), and raising the maximum port to 65000 (normally
61000). Important: This means you can’t have server software that attempts to bind
to a port above 9999! If you need to bind to a higher port, say 10075, just modify
this port range appropriately.
Increase the read/write TCP buffers (tcp_rmem and tcp_wmem) to allow for larger
window sizes. This enables more data to be transferred without ACKs, increasing
throughput. We won’t tune the total TCP memory (tcp_mem), since this is
automatically tuned based on available memory by Linux.
Decrease the VM swappiness parameter, which discourages the kernel from swapping
memory to disk. By default, Linux attempts to swap out idle processes fairly
aggressively, which is counterproductive for long-running server processes that
desire low latency.
Increase the TCP congestion window, and disable reverting to TCP slow start after
the connection is idle. By default, TCP starts with a single small segment, gradually
increasing it by one each time. This results in unnecessary slowness that impacts
the start of every request – which is especially bad for HTTP.

To start, edit /etc/sysctl.conf and add these lines:

Performance Tuning
CrossBox Server
Max Number of Workers

Linux Server

Kernel Parameters

/etc/sysctl.conf
Increase system file descriptor limit
fs.file-max = 100000

Discourage Linux from swapping idle processes to disk (default = 60)
vm.swappiness = 10

Increase ephermeral IP ports
net.ipv4.ip_local_port_range = 10000 65000

Increase Linux autotuning TCP buffer limits
Set max to 16MB for 1GE and 32M (33554432) or 54M (56623104) for 10GE
Don't set tcp_mem itself! Let the kernel scale it based on RAM.
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.core.rmem_default = 16777216
net.core.wmem_default = 16777216
net.core.optmem_max = 40960
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216

Make room for more TIME_WAIT sockets due to more clients,
and allow them to be reused if we run out of sockets

Since some of these settings can be cached by networking services, it’s best to reboot
to apply them properly (sysctl -p does not work reliably).

In addition to the Linux fs.file-max kernel setting above, we need to edit a few more files
to increase the file descriptor limits. The reason is the above just sets an absolute max,
but we still need to tell the shell what our per-user session limits are.

So, first edit /etc/security/limits.conf to increase our session limits:

Next, /etc/ssh/sshd_config needs to make sure to use PAM:

And finally, /etc/pam.d/sshd needs to load the modified limits.conf :

You can confirm these settings have taken effect by opening a new ssh connection to
the box and checking ulimit :

Finally, let’s increase the TCP congestion window from 1 to 10 segments. This is done
on the interface, which makes it a more manual process that our sysctl settings. First,
use ip route to find the default route, shown in bold below:

Also increase the max packet backlog
net.core.netdev_max_backlog = 50000
net.ipv4.tcp_max_syn_backlog = 30000
net.ipv4.tcp_max_tw_buckets = 2000000
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_fin_timeout = 10

Disable TCP slow start on idle connections
net.ipv4.tcp_slow_start_after_idle = 0

If your servers talk UDP, also up these limits
net.ipv4.udp_rmem_min = 8192
net.ipv4.udp_wmem_min = 8192

Disable source routing and redirects
net.ipv4.conf.all.send_redirects = 0
net.ipv4.conf.all.accept_redirects = 0
net.ipv4.conf.all.accept_source_route = 0

Log packets with impossible addresses for security
net.ipv4.conf.all.log_martians = 1

Open File Descriptors

/etc/security/limits.conf
allow all users to open 100000 files
alternatively, replace * with an explicit username
* soft nofile 100000
* hard nofile 100000

/etc/ssh/sshd_config
ensure we consult pam
UsePAM yes

/etc/pam.d/<g class="gr_ gr_808 gr-alert gr_spell gr_inline_cards gr_run_anim ContextualSpelling ins-del
multiReplace" id="808" data-gr-id="808">sshd</g>
ensure pam includes our limits
session required pam_limits.so

ulimit -n
100000

TCP Congestion Window

route
default via 10.248.77.193 dev eth0 proto kernel
10.248.77.192/26 dev eth0 proto kernel scope link src 10.248.77.212

Copy that line, and paste it back to the ip route change command, adding initcwnd 10 to the
end to increase the congestion window:

To make this persistent across reboots, you’ll need to add a few lines of bash like the
following to a startup script somewhere. Often the easiest candidate is just pasting
these lines into /etc/rc.local :

More CPUs means more concurrency
More than 4GB of RAM is often not required, even with high concurrency
Faster Disk means faster IO, therefore we always recommend having an SSD

Revision #3
Created 7 years ago by Docs Admin
Updated 7 years ago by Docs Admin

route change default via 10.248.77.193 dev eth0 proto kernel initcwnd 10

defrt=`ip route | grep "^default" | head -1`
ip route change $defrt initcwnd 10

Hardware

https://crossbox.io/user/1
https://crossbox.io/user/1

	Performance Tuning
	CrossBox Server
	Max Number of Workers

	Linux Server
	Kernel Parameters
	Open File Descriptors
	TCP Congestion Window

	Hardware

